
Research Paper

High-Throughput Self-Interaction Chromatography: Applications in Protein
Formulation Prediction

David H. Johnson,1,4 Arun Parupudi,2 W. William Wilson,2 and Lawrence J. DeLucas3

Received July 8, 2008; accepted September 24, 2008; published online October 16, 2008

Purpose. Demonstrate the ability of an artificial neural network (ANN), trained on a formulation screen
of measured second virial coefficients to predict protein self-interactions for untested formulation
conditions.
Materials and Methods. Protein self-interactions, quantified by the second virial coefficient, B22, were
measured by self-interaction chromatography (SIC). The B22 values of lysozyme were measured for an
incomplete factorial distribution of 81 formulation conditions of the screen components. The influence of
screen parameters (pH, salt and additives) on B22 value was modeled by training an ANN using B22 value
measurements. After training, the ANN was asked to predict the B22 value for the complete factorial of
parameters screened (12,636 conditions). Twenty of these predicted values (distributed throughout the
range of predictions) were experimentally measured for comparison.
Results. The ANN was able to predict lysozyme B22 values with a significance of p<0.0001 and RMSE of
2.6×10−4 mol ml/g2.
Conclusions. The results indicate that an ANN trained on measured B22 values for a small set of
formulation conditions can accurately predict B22 values for untested formulation conditions. As a
measure of protein–protein interactions correlated with solubility, B22 value predictions based on a small
screen may enable rapid determination of high solubility formulations.

KEY WORDS: artificial neural network; formulation development; physical protein stability; self-
interaction chromatography; systematic screening.

INTRODUCTION

A protein’s interaction with itself and with other proteins
affects important characteristics such as its solubility (1),
aggregation (2) and ability to crystallize (3). Measurement of
second virial coefficients, B22 (4), provides one method to
quantify protein interactions at the molecular level. B22 is a
measure of the entirety of two body protein self-interactions
that includes contributions from excluded volume, electro-
static factors (attractive and repulsive) and hydrophobic
interactions. In terms of McMillan–Meyer solution theory
(5), B22 is related to a potential of mean force which describes
all of the interaction forces between protein molecules in a
dilute solution. Positive B22 values correspond to net repul-
sive forces of the protein and are correlated with increased
protein solubility in solution (1,6) whereas values in the
negative range correspond to the net attractive forces
required for protein insolubility (i.e. precipitation or crystal-

lization conditions (3)). Identified as one indicator of the
physical stability of proteins in solution (7), the second virial
coefficient depends on a variety of solution formulation
parameters including temperature, pH and the type and
concentration of salts and excipients (additives). As these
additives interact with a protein’s surface, they naturally
change that surface with respect to shape change and other
interaction parameters.

The second virial coefficient can provide functional
insight at various stages of the drug discovery process. The
initial evaluation of a protein’s function in human pathology
is often facilitated by study of the protein’s structure by
means of x-ray diffraction. George and Wilson have shown
(3) that proteins generally crystallize when their B22 values
are in a “crystallization slot” ranging from approximately −0.2
to −8 (×10−4 mol ml/g2). This B22 range, confirmed by several
research groups, represents slightly to moderately attractive
forces between proteins, a condition that appears to be
important for nucleation and subsequent crystal formation
(2,8–10).

The determination of solution conditions yielding dif-
fraction quality crystals, as well as high protein solubility and/
or low nonspecific aggregation of proteins expressed in
prokaryotic and eukaryotic systems, represent major bottle-
necks in high-throughput protein structure (11,12). Although
there have been advances in the ability to recover bioactive
protein from the inclusion bodies of various expression
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systems (13), these techniques require customization to the
protein of interest, a requirement that is not conducive to
high throughput methods. The mathematical relationship
between the B22 value and solubility, derived by Haas et al.
(1), indicates a marked increase in solubility with increasing
B22 value. This relationship has been validated experimental-
ly for a variety of proteins (1,6,8). Thus, a second application
of the second virial coefficient involves its use as a diagnostic
for protein solubility.

Protein solubility and stability are as important in the
evaluation of therapeutic proteins as they are in the study of
proteins involved in disease pathology. The Food and Drug
Administration’s (FDA) evaluation of a drug candidate
includes two primary criteria: solubility and membrane
permeability (17). In a recent overview of pharmaceutical
drug screening techniques (18), three methods of solubility
screening were identified: UV absorption, nephelometry and
flow cytometry. These methods, developed for analysis of
small molecules, are used to calculate current or potential
solubility of a specific drug formulation and can be performed
in a high throughput manner. However, they do not directly
quantify the protein self-interactions that influence solubility
and aggregation of protein therapeutic molecules.

Measurement of the second virial coefficient, performed
using static light scattering (SLS) (3), consumes a significant
amount of protein and time (multiple light scattering readings
are necessary to calculate one B22 value) and it requires
careful attention to solution clarity. In contrast, a second
method for determining the second virial coefficient known as
self-interaction chromatography (SIC) provides advantages to
each of the constraints of the SLS method as referenced by
Tessier et al. (20). SIC initially requires chemical coupling of
protein to a solid support followed by careful packing of the
support in a small chromatography column. Once prepared,
however, the column is stable and can be repeatedly used to
measure B22 values, making it more applicable to high-
throughput techniques. Each measurement consists of flowing
a mobile microgram injection of the protein across the
immobilized protein particles using an HPLC. The retention
time of the mobile protein is directly related to its interaction
with immobilized column protein (19), thereby providing a
direct measurement of how two proteins (bound and injected)
interact with one another. Formulas relating the chromato-
graphic retention time to B22 values can be found in the paper
of Tessier et al. (20). This technique has been successfully
used with low throughput screens (16 conditions) to measure
the interactive effects of two formulation parameters on B22

(21).
In this study we used self-interaction chromatography to

rapidly measure the B22 value of hen egg-white lysozyme in
81 solution formulations. The screen measures the pair-wise
effects of nine different additives on the self-interaction of the
lysozyme protein. The well known incomplete factorial
experimental design technique, applied to crystallization
screening by Carter and Carter (22), is used to ensure wide
coverage of the search space with a reduced number of test
conditions. The incomplete factorial design is accomplished
by mapping the parameters of interest (pH, salts, additives,
concentrations) onto an orthogonal array (23,24). Mapping
parameters to an orthogonal array allows equal representa-
tion of parameter levels throughout the search space while

reducing the 12,636 possible parameter combinations down to
a reasonable screen size of 81 conditions. The B22 values are
measured to quantify the degree of lysozyme self-interaction
in each of the formulations.

The results of the screen are first analyzed by manually
examining the linear and quadratic trends of each formulation
parameter on B22 value. Parameters with the most statistically
significant effect on protein-protein interaction (B22 value) of
lysozyme are identified within the screen. These parameters
with strong influence on protein interactions (such as NaCl)
are shown to have an effect on B22 value regardless of the
presence of other additives in varying formulations. This
allows for the rapid identification of additives that could be
used to modify protein–protein interactions.

While a manual examination of parameter effects can
identify the strong correlations of single parameters, this
initial analysis does not examine the effect of parameter
interactions. To analyze the effect of additive combinations
on protein–protein interaction we modeled the results of the
B22 value screen using an artificial neural network (ANN).
Artificial neural networks have utility when the effect of
specific combinations of a large number of variables/param-
eters, as well as each variable’s level (i.e. concentration of
various chemicals), must be analyzed to determine the
optimal combination to yield a desired outcome. The large
number of potential additive combinations and their possible
levels defines a search space that precludes manual inspection
of the data as a reasonable method for finding the optimum
parameters and parameter concentrations. Artificial neural
networks are able to utilize an incomplete factorial subset of
parameter combinations to determine correlations between
discrete variable combinations and their respective levels.
Neural network modeling has been used to predict novel
crystallization conditions (25) and to confirm theoretical
calculations of B22 for very small molecules (26).

An artificial neural network is essentially a set of non-
linear weighted functions which map input variables (screen
parameters) into output variables (B22 value) (27). The
weights are initialized to random values resulting in a random
mapping of the screen parameters onto B22 values. The
subsequent training process to determine optimal weights is
performed by iteratively updating the weights to reduce error
between the ANN output and observed values (B22 screen).
For each iteration, the ANN attempts to produce B22 values
closer to the observed B22 values for the given input
parameters. After the training process is complete, the neural
network model is used to produce B22 value predictions of
lysozyme for all possible formulations of one or two additives.

ANN B22 value predictions of lysozyme for 20 different
formulation conditions were experimentally validated via SIC
B22 values of lysozyme dissolved in each condition. The
chosen conditions included 10 from the most positive and
negative B22 value predictions combined with 10 spread
throughout the range of predicted B22 values. The results
demonstrate that an artificial neural network, trained using
an incomplete factorial additive screen, can accurately predict
the second virial coefficient of the protein in previously
untested formulations.

Finally, the ANN model is compared with a more
traditional generalized linear model (GLM). Identical param-
eters used as inputs for the artificial neural network are
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included for consideration by the GLM. In the stepwise
procedure the GLM uses an iterative process to determine
which parameters significantly influence the second virial
coefficient. For GLM analysis, the gradual process of ANN
weight determination during each iteration is replaced by
linear regression to calculate optimal linear model coeffi-
cients. The significance of each parameter is considered
during each iteration, with new parameters added or removed
based on a predetermined alpha value threshold. After
significant parameters are identified by this stepwise process,
linear model coefficients are calculated by linear regression.
The GLM, like the trained ANN, can be used to predict the
B22 values of the protein for untested formulation conditions.
Comparison of the GLM predictions to the ANN predictions
indicates that, for this application, the ANN produces a more
accurate and robust model than the GLM.

MATERIALS AND METHODS

Screen Conditions

Hen egg-white lysozyme was purchased from Calbio-
chem. The chromatography particles, Toyopearl AF-Formyl-
650M (65 μm diameter particle, 0.1 μm diameter pore), were
purchased from Tosoh Bioscience. Buffer formulation chem-
icals include glycerol, glycine, glutamic acid, mannitol, sodium
citrate, sodium acetate and acetic acid; all purchased from
Fisher Scientific. Additional formulation chemicals PEG4000,
MPD and trehalose were purchased from Sigma-Aldrich
under the Fluka brand name. Sigma-Aldrich was also the
source for chromatography bead capping agent, ethanol-
amine, as well as the formulation chemicals Na2SO4, Na
HEPES, HEPES acid and citric acid. The final two formula-
tion chemicals, succinic acid and arginine, were purchased
from Acros Organics.

Each of the 81 solution formulations contain buffer, salt
and one or two co-solvents listed in Table I. The salt and each
co-solvent can appear in low, medium or high concentration
which varies depending on the solubility of the individual salt
or co-solvent added. If all combinations of two solvents and
four salts at three individual levels of concentration are
combined with four pH levels represented by the buffers then
the full factorial of 12,636 conditions is determined. To reduce
the number of conditions in which the B22 of lysosyme is
measured, the identity of each screen formulation was
determined by mapping the parameters onto an orthogonal

array design as described by Sloane (28). This mapping
produces formulation targets in which each pair of variables
are equally represented throughout the screen (thereby
producing a balanced screen with respect to the influence of
individual parameters).

The water source for formulations was pre-filtered at
18 MΩ by a Millipore MilliQ system with trace sodium azide
added to retard bacteria growth. Sodium and acid forms of
0.1 M buffers are mixed at their pKa in the presence of co-
solvents (except in the case of the succinic buffer which was
adjusted to pH with NaOH). The pH of each solution was
confirmed via a Corning 430 pH meter with the final pH
adjusted solutions filtered (0.22 μm (Fisher Scientific) syringe
filter) and stored at room temperature.

Protein Immobilization

Lysozyme (LYZ) was immobilized to AF-Formyl-650M
beads as described by Valente et al. (29) with only slight
modification. One ml of 1 M K2HPO4 at pH 7.0 was added to
350 μl of AF-Formyl-650M beads followed by centrifugation
(bench-top, 30 s 7k rpm). The wash was performed an
additional two times to remove excess packing buffer. LYZ
(5 mg) was dissolved in the phosphate buffer and incubated
with the beads. Fifteen mg of sodium cyanoborohydride was
added to the bead mixture to activate the binding chemistry
and mixed via rotary mixer at room temperature for 90 min. A
5 μl sample of the supernatant containing unbound LYZ was
diluted with 45 μl of 0.1 M sodium acetate buffer pH 4.7 and
assayed via a bicinchoninic acid (BCA) assay (Thermo
Scientific). The beads were centrifuged and washed twice with
phosphate buffer plus 5% (w/v) NaCl and twice with phos-
phate buffer sans NaCl to remove any remaining LYZ. After
binding and washing, unreacted formyl groups were capped by
adding 1 ml of 1 M ethanolamine at pH 8.0 and 10 mg sodium
cyanoborohydride, followed by additional rotary mixing for
90 min. After this final step of immobilization the beads were
washed twice with 1 mL of the sodium acetate buffer.

Self-Interaction Chromatography

Immobilized beads were packed into a micro-column
consisting of teflon FEP tubing (i.d. 0.03″, o.d. 1/16″) and
were blocked at one end by a 2 μm stainless steel screen
(Valco). Two 1.1 cm lengths of packed tubing (∼5 μl each)
were cut from the packing end, diluted with 45 μl of sodium

Table I. Formulation Parameters

Buffers Salts Additives

Acetate (pKa 4.7) NaCla Arginineb Sucrosec MPDd

Succinate (pKa 5.6) NaCitratea Glutamic Acidb Mannitolc PEG4000d

MES (pKa 6.1) Na2SO4
a Glycineb Trehalosec Glycerolf

HEPES (pKa 7.5)

A list of additives, salts and buffers utilized in the formulation screen
aLow: 0.1 M; Medium: 0.3 M; High: 0.5 M
bLow: 0.02 M; Medium: 0.04 M; High: 0.06 M
cLow: 0.1 M; Medium: 0.2 M; High: 0.3 M
dLow: 5%; Medium: 10%; High: 15% (w/v)
fLow: 3%; Medium: 6%; High: 9% (w/v)
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acetate buffer and assayed using the BCA assay (Pierce
Biotechnology) to determine protein binding density on the
column. The packing end of the column was then cut to 18 cm
length, sealed with an additional screen. When not in use the
column was stored with 0.1 M sodium acetate buffer pH 4.7 at
4°C. A second column, referred to as the dead column, was
packed with beads that have been subjected to only the
capping portion of the immobilization procedure. Acetone
was used as a non-interacting void-volume marker and was
dissolved in water at 3% (v/v) for injections. The protein
injection solution consists of 5 mg of lysozyme dissolved in
1 ml of each of the four separate 0.1 M buffers (Table I).

All chromatograms were generated using a high perfor-
mance liquid chromatography (Shimadzu) system consisting
of two pumps, an auto-sampler for sample injection, column
oven, 280 nm UV detector and software for automatic
retention-time calculation. Each screen formulation was run
through the column at 60 μl/min and the auto-sampler was
used to inject 1 μl of the 5 mg/ml LYZ solution in buffer
identical to the formulation buffer applied to the column.
Column temperature was maintained at 23°C. Injections were
performed in triplicate over the same column and B22 values
measured for the entire 81-condition screen on two columns
with the final B22 values averaged over both column.
Solutions with outlying (1.5*IQR) variance between two
columns (N=9) were measured on a third column. If the B22

of two columns were within the average standard deviation
between two columns (1.7 B22 units) the disagreeing mea-
surement was excluded. Sample chromatograms shown in
Fig. 1 demonstrate the influence of NaCl on retention time
measured at peak elution. In the primary equation used to
calculate B22 values, Eq. 1, NA is Avagadro’s number and
MW is the molecular weight of the protein.

B ¼ NA

MW2 BHS � k0

��

� �
ð1Þ

The phase ratio, ϕ, is the ratio of the available surface area
per unit of null volume and has been calculated for a variety
of different chromatography particles (30). The density of
protein immobilized on the column is ρ. In this study binding
density varied from 17.5 to 22.4 mg/ml (measured by Pierce
BCA assay). The variation in protein binding determines the
magnitude with which variations in protein retention time
affect B22 value. The variable k′ is the chromatographic
retention factor calculated from the protein retention time (tr)
and acetone retention time (t0) given by the equation:

k0 ¼ tr � t0
t0

ð2Þ

In this equation, Eq. 2, the acetone retention time (t0) acts as
a non-interacting marker to establish the relationship be-
tween non-interacting molecules with bound protein com-
pared to interacting molecules with bound protein.

The chromatograms shown in Fig. 1 hold additional
importance as the method by which column integrity is
verified throughout the screening process. The B22 value of
lysozyme in NaCl concentrations of 5% and 0% (w/v) was
measured after every eight formulation conditions, consisting
of three injections each, or every 24 protein injections. The
column was expected to be fairly stable because protein was

covalently bound to chromatography media and unbound
active groups were rendered relatively inert by the capping
process. Regular validation of the column ensured that the
addition or loss of protein from the column did not significantly
alter B22 measurements throughout the screening process.
The standard deviation of lysozyme B22 value for NaCl
conditions was only 1.1 B22 units throughout the lifetime of
the column (81 screen formulation conditions). This gave
assurance that the chromatography column does not experi-
ence a significant change in activity due to the addition or
subtraction of protein to the column. To ensure the dead
volume of the column was not significantly altered from
packing of column material, acetone retention time was
also measured after every eight formulation conditions. At
a fixed protein retention time the standard deviation of B22

measurements due to variation in acetone retention time
(including effects from column packing) was 0.8 B22 units.

Static Light Scattering

The traditional static light scattering (SLS) experiment
requires measurement of the scattered light intensity from
a protein solution in excess of background as a function of
protein concentration. The traditional SLS experiment was
modified in two important ways in order to minimize both
time and protein required for a single B22 measurement
(31). The first modification is the incorporation of a low
volume (∼1 μL) scattering cell. The second modification is a
configuration allowing the simultaneous measurement of
scattering intensity and protein concentration. This is
accomplished by using a bifurcated fiber to deliver both
the incident laser beam for scattering and the incident UV
beam for absorption (protein concentration) measurements.
The advantage of this configuration is that the simultaneous
measurement of light scattering intensity and protein concen-
tration allows the determination of the second virial coefficient
from a single injection of protein sample into a flow system.
Typically, 5–10 μl of protein solution at 1–2 mg/ml protein
concentration were required for a single B22 measurement.

Fig. 1. Retention times for lysozyme in 5% NaCl and 0% NaCl in
0.1 M sodium acetate buffer demonstrates the affect of NaCl on
lysozyme self-interaction. The retention time for 3% acetone in the
same buffer with 5% NaCl provides a reference point for conversion
of retention times to B22 values.
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The intensity and concentration data were treated
according to the SLS working equation (32):

Kc
R90

¼ 1
M

þ 2B22c ð3Þ

where K is an optical constant (cm2 mol g−2) given by K=4π2

(dn/dc)2 no
2/(NA λ4), c is the protein concentration (g cm−3),

R90 is the Rayleigh factor (cm−1) at angle 90°, M is the
molecular weight of the protein (g mol−1), B22 is the second
virial coefficient (mol ml g−2), dn/dc is the refractive index
increment (cm3 g−1), n0 is the solvent refractive index, NA is
Avogadro’s number (mol−1), and λ is the wavelength (cm) of
the incident light in a vacuum. According to Eq. 3, a plot of
Kc/R90 vs c (often called a single angle Zimm plot) linearizes
the SLS data and B22 is determined from the limiting slope.

Artificial Neural Network (ANN)

Artificial neural network modeling was performed using
the Java Object Oriented Neural Engine (JOONE) (33).
Fig. 2a shows the overall network topology of the neural
network used in this study including inputs, node configura-
tion and B22 value output. Each node represents a nonlinear
transformation of inputs and is grouped into one of two layers
according to distance from the input parameters. Regardless
of position in the topology, the output of each node is
calculated by two steps shown in Fig. 2b. First, a weighted
sum of inputs to the node is calculated, z. The hyperbolic
tangent is taken of this weighted sum to calculate node

output. Each node in layer 1 takes as input all formulation
parameters while each node in layer 2 takes all outputs from
layer 1 as input. The final B22 value output is calculated as a
simple weighted sum of layer 2 outputs without a nonlinear
transformation. This permits the range of output values to
match the range of screened B22 values rather than the (−1,1)
range of the hyperbolic tangent function. Through calculation
of each layer’s outputs in sequence this architecture is able to
estimate the protein B22 value for a given set of condition
formulation parameters. The weights associated with each
input node are the variables subject to training, thereby
creating a network function that most accurately represents
protein B22 values over all given formulation parameters.

This architecture (input vector, layers and output) is
generally referred to as a feed-forward multilayer perceptron
and is capable of modeling a continuous function to arbitrary
accuracy given a sufficient number of nodes (27). Arbitrary
accuracy is apparent if one considers a network topology
containing one node for each formulation condition (N=81).
After training the weight parameters, the response of each
node could represent the measured B22 value for each specific
formulation condition. Such an exact fit to the screen would
result in over-fitting to the error inherent to the screen and
would not provide a good, generalized response to formula-
tion conditions outside those on which it was trained.

When the training algorithm is responsible for adjusting
neural network weights to over-fit output to a specific training
set it is referred to as over-training. To address the problem of
over-training of the neural network, we split the set of screen
conditions into a training set (90%) and a validation set
(10%) and used a technique called early-termination to
determine when to stop the training procedure. During
training, the weights are iteratively adjusted using the
gradient decent algorithm of back-propagation. This algo-
rithm assigns an error contribution and updates each weight
based on the root mean square error (RMSE) between the
neural network output and the measured protein second
virial coefficient for each formulation condition in the training
set. RMSE is also calculated between the neural network
output and measured B22 values in the validation set for each
iteration. The validation set RMSE is not used to improve
weight values, but instead acts as the basis for deciding when
to terminate the training procedure. The network weights are
fixed at the minimum validation RMSE over a set number of
iterations (1,000). Validation set RMSE is also used as a
measure of how well a network topology is able to generalize
to untested formulation conditions. All network topologies
from 1×1 to 6×6 nodes were evaluated by a validation set
RMSE to determine the 3×2 network topology used for this
study. Further details about neural network algorithms and
methods can be found in Bishop’s review (27) of the subject
as well as in the JOONE software documentation (33).

Stepwise Generalized Linear Model (GLM)

The stepwise generalized linear model was performed
using the JMP (34) statistical software package. The neural
network inputs shown in Fig. 2 were also the parameters used
for the GLM. The GLM algorithm requires explicit identifi-
cation of interaction and high order terms for consideration.
In addition to the neural network inputs, all pairwise

Fig. 2. The artificial neural network topology (a) uses parameters of
a single formulation as input to each node in Layer 1. Each node’s
output (b) is calculated by an activation function (tanh) whose input is
a weighted sum of the node input. The output of nodes in layer one
are forwarded as the input to Layer 2. The output of nodes in Layer 2
are weighted and summed to produce a B22 value prediction based on
the input formulations.
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interactions and square terms of the formulation screen were
included for consideration. The stepwise algorithm was
configured to include terms with a significance of alpha
<0.20 with higher order and interaction terms restricted to
only those whose lower order terms were also significant.

Prediction Verification

The second virial coefficient for all combinations of
buffer, salt and a maximum of two excipients (12,636
conditions) were predicted by the trained ANN. Five
conditions from the most positive B22 values and five of the
most negative B22 values as well as ten equally spaced
throughout the range of predicted B22 values were selected
for experimental confirmation. These 20 verification formu-
lations (not included in the training process) were prepared
and B22 values of lysozyme in each were experimentally
measured using the identical method as the original 81 screen
conditions.

The question of whether 81 screen conditions are
necessary or if a smaller subset would suffice was addressed
by evaluating the ability of the neural network to predict the
verification B22 values while training on a reduced set of the
initial screen. First a condition was randomly removed from
the original training set of the neural network. The training
process described above was repeated on the reduced training
set with the same validation set size remaining constant
(deemed a valid indication of the overall population). Then
the neural network, trained on a reduced set of the original 81
condition screen, was used to calculate predictions for the
verification B22 values. Progressively reducing the sample
size, followed by training and prediction, allows error as a
function of sample size to be evaluated.

To determine how sample size affects neural network B22

value predictions, the validation set was kept constant while
iteratively removing a random condition from the training set.
As there is no consensus in the literature as to how this type
of analysis should be performed, a constant validation set was
chosen as a good measure of the ability for the network to
generalize. We were able to see how available training data
influences accuracy by keeping the same validation set
through repeated reductions in the training set size. After
iterative removal of a random condition from the training set,
the ANN is re-trained and then asked to predict the same 20
verification formulations chosen for the initial evaluation of
ANN performance. This process was performed three times
(with a different sequence of random removals each time)
and the error for a given training set size was taken as the
average of all three series of removals.

RESULTS AND DISCUSSION

Confirmation by Static Light Scattering

A strong correlation (r=0.97) between static light
scattering and self-interaction chromatography was observed
(Table II) for ten test conditions as has been previously
reported by other laboratories (20,29). The primary differ-
ences between the two measurements were found at two of
the most positive B22 values. B22 values in this range were
expected to exhibit greater error since large positive B22

values have been shown to correspond to very high levels of
solubility (1,6). Thus a small difference in B22 value repre-
sents a larger difference in solubility. Therefore, from a
practical perspective, all high positive B22 values represent
regions of high protein solubility even though individual B22

value errors are larger in this region.

SCREEN RESULTS

The B22 value results of lysozyme for the 81 formulation
conditions demonstrates some characteristics expected of the
protein. For example, the mean B22 of the screen is positive
1.1×10−4 mol ml/g2 which is reflective of the general soluble
nature of lysozyme. Additionally, a majority of the
formulation conditions (55%) reside in the crystallization
slot identified by George and Wilson (3) which is
approximately [−8,−0.2]×10−4 mol ml/g2. This is indicative
of the ease with which lysozyme crystals are formed. It is also
of interest to note that the average standard deviation
between measurements was 1.7×10−4 mol ml/g2. This
suggests that B22 measurements produced using self-
interaction chromatography are reproducible throughout a
large range of different solution conditions.

Interesting trends are also observed when viewing the
influence of a single parameter throughout the screen. Fig. 3
shows a graph of B22 value versus three individual parameter
concentrations (NaCl, MPD, Glycine). The variation between
plotted B22 values at a fixed concentration is due to the fact
that other additives change with each condition. Error bars
around each point indicate the error from measurement to
measurement for each specific formulation. The increasing
lysozyme self-interaction (decreasing B22) with increased
concentration of sodium chloride (Fig. 3a) is expected and
has been demonstrated in other studies by both SIC and SLS
(29). At the mid and high concentrations of NaCl, four of the
five conditions with positive B22 values contain MPD. This
combined with the fact that MPD shows a trend (Fig. 3b) of
decreasing lysozyme self-interaction (increasing B22) with
increasing concentration identifies MPD as a potential
solubilizing agent for lysozyme. Quadratic relationships
between additive concentration and B22 value, such as that
apparent in glycine (Fig. 3c) could also indicate an additive
which might help stabilize protein self-interaction at a specific
level. These single factor cross sections are useful for
identifying individual additives which have a strong influence

Table II. Comparison Between B22 Values Measured by Static Light
Scattering (SLS) and Self-Interaction Chromatography (SIC)

Condition ID
SLS B22

(×10−4 mol ml/g2)
SIC B22

(×10−4 mol ml/g2)

9 9 9.3
24 −1.4 −1.3
27 14 11
35 9 5.3
36 1.4 2.1
39 −1.4 −1.3
46 −0.5 0.0
60 7 7.7
72 3.7 3.8
79 −5 −3.6
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on B22 value. However, the prediction capability of single
variable linear and quadratic regression models is obviously
not sufficient to capture the variability in protein-protein
interactions caused by formulations with multiple additives.

Modeling and Prediction Results

The neural network trained on all conditions, except for
nine (10%) reserved for validation, produces a model which
predicts the original screen with a RMSE of 1.7×10−4 mol ml/g2.
This is equal to the observed average standard deviation
between measured B22 values and reinforces the notion that
early termination of training based on the validation set error
prevents over-training of the neural network to the screen
results. Upon completion of training, the neural network is
used to predict B22 values for all possible variable
combinations with one or two additives (12,636 formulation
conditions). From this entire number of predictions, 20
predictions were chosen for verification. These 20 conditions
were chosen to represent the entire solubility range, with some

from the most positive and negative predicted B22 values.
These formulation conditions and their predicted second virial
coefficients are shown in Table III. The experimental
formulations in Table III were prepared and their effect on
lysozyme’s second virial coefficient measured via SIC. A plot
of measured B22 values versus ANN predicted values are
shown in Fig. 4. This figure demonstrates that the neural
network is able to predict second virial coefficients with an
accuracy of 2.6×10−4 mol ml/g2.

Screen sample size plays a role in how accurately the
ANN model is able to predict untested formulation condi-
tions. Fig. 5 shows the relationship between screen sample
size and the prediction error of the ANN. As the size of the
training set decreases the prediction error of the ANN
increases. However, a B22 value prediction error of 3 B22

units is still attainable with a training set size of 45 screen
conditions. The addition of formulation conditions to the
training set provides a diminishing improvement to the
prediction error. It is interesting to note in Fig. 5 that
the error curve does not completely flatten at a screen sample

Fig. 3. Response of B22 value for lysozyme by a NaCl (F test; df=1; p=0.0006), b MPD (F test; df=1; p=0.001) and c glycine (F test; df=2; p=
0.006) throughout all screen conditions containing the additive of interest. Error bars represent standard error between SIC measurements
between whereas variability between points at a fixed additive concentration is attributed to changes in formulation parameters outside the
additive of interest. Scatter along the abscissa is added to prevent overlapping of error bars.

Table III. ANN Predictions of 20 Formulations Selected for Verification

Buffer Salt Excipient 1 Excipient 2 Predicted B22
a Measured B22

a

0.1 M HEPES 0.5 M NaCl 0.04 M Glycine 0.04 M Arginine −6.0 −8.45
0.1 M Succinate 0.5 M Na2SO4 0.06 M Glycine 0.2 M Mannitol −5.8 −6.21
0.1 M HEPES 0.5 M NaCl 0.04 M Glutamic Acid 0.3 M Mannitol −5.5 −7.68
0.1 M Acetate 0.5 M Na2SO4 0.06 M Glycine 0.1 M Sucrose −5.1 −1.42
0.1 M MES 0.5 M NaCl 0.3 M Mannitol 0.2 M Trehalose −5.1 −2.38
0.1 M Succinate 0.5 M NaCl 0.06 M Glycine 0.3 M Sucrose −3.6 −3.2
0.1 M HEPES 0.5 M Na2SO4 0.06 M Arginine 0.1 M Mannitol −2.6 −2.03
0.1 M HEPES 0.1 M Na2SO4 0.02 M Arginine 0.1 M Mannitol −1.8 −0.8
0.1 M Succinate 0.5 M NaCl 0.3 M Trehalose 5% MPD −1.1 3.51
0.1 M Succinate 0.5 M NaCitrate 0.02 M Glycine 0.3 M Sucrose −0.4 −1.34
0.1 M Acetate 0.3 M Na2SO4 0.06 M Arginine 0.2 M Trehalose 0.4 1.34
0.1 M Acetate 0.1 M NaCl 0.06 M Arginine – 1.5 3.08
0.1 M Succinate 0.1 M Na2SO4 0.2 M Mannitol 10% PEG4000 2.8 −0.6
0.1 M MES 0.3 M NaCl 15% MES – 4.4 −0.6
0.1 M HEPES 0.3 M NaCl 10% MPD 9% Glycerol 6.8 6.18
0.1 M MES 0.3 M NaCitrate 9% Glycerol 10% PEG4000 9.1 6.61
0.1 M MES 0.3 NaCl 0.04 M Glycine 15% PEG4000 9.3 9.18
0.1 M MES 0.1 M Na2SO4 0.06 M Glycine 15% MPD 9.8 7.42
0.1 M HEPES 0.3 M NaCitrate 0.1 M Trehalose 15% MPD 13 9.54
0.1 M HEPES 0.3 M NaCitrate 10% MPD 10% PEG4000 14 7.85

a (×10−4 mol ml/g2 )
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size of 81 formulations. An extrapolation of this suggests a
screen of over 100 formulation conditions could permit ANN
B22 predictions with an error close to 1.7×10−4 mol ml/g2; the
variability between B22 values measured on separate
columns.

The standard generalized linear model provides a
comparison of the ANN with a standard linear regression
technique used for data analysis/predictions. The terms of the
GLM were determined by considering all single terms,
interaction terms and square terms and incrementally adding
the most significant remaining parameter until there are no
more parameters with a significance of alpha <0.20. The
GLM parameters and their significance level generated by
this method are listed in Table IV. This table demonstrates
one benefit of the GLM over ANN. Incremental analysis of
each parameter produces a list of factors and their p-value
significance. This helps identify specific formulation parameters
which could increase solubility. However, when predicting the
second virial coefficient of protein in previously unformulated
conditions the GLM does not perform as well as the ANN. The

plot in Fig. 6 shows the same 20 measured B22 values for ANN
validation versus the GLM predictions. Although both pre-
dictions are statistically significant (F test; df=1; p<0.0001), the
GLM is accurate with a RMSE of 3.3×10−4 mol ml/g2 which
implies the ANN is approximately 25%more accurate than the
GLM. However both techniques are useful for formulation
prediction based on a small subset of conditions.

Limitation

A limitation of this screen and formulation prediction
technique is in the ability to predict formulation conditions
with parameter concentrations well outside the screened
range. The inability for statistical models to extrapolate
results outside their original input range is well known. This
implies that the range of pH and salt/additives concentrations
must be chosen based on an estimation of the effective range

Fig. 5. ANN RMSE vs sample size. Incremental reduction in sample
size shows an increase in error for artificial neural network
predictions of the 20 verification formulations. Dashed line indicates
the error between B22 value measurements by SIC between columns
(1.7 mol ml/g2).

Fig. 4. ANN predicted B22 value vs measured B22 values of the 20
verification formulations (F test; df=1; p<0.0001; RMSE=2.6×
10−4 mol ml/g2).

Fig. 6. GLM predicted B22 values vs measured B22 values of the 20
verification formulations (F test; df=1; p<0.0001; RMSE=3.3×
10−4 mol ml/g2).

Table IV. Additives with Statistically Significant Influence as Deter-
mined by Stepwise GLM

Factor p value Magnitude×10−4 mol ml/g2

Glycine <0.0001 −1.5
MPD <0.0001 2.5
NaCl <0.0001 1.4
PEG4000 <0.0001 2.1
Arginine 0.0001 −1.3
Citrate 0.0004 0.5
Mannitol 0.0127 −0.6
Glycerol 0.0562 −1.4
Glycine × PEG4000 <0.0001 1.7
Arginine × Glycine 0.0002 −2.2
NaCl × MPD 0.0099 −0.5
NaCl × Mannitol 0.0154 −0.4
Citrate × Glycine 0.0272 0.3
Citrate × Mannitol 0.1573 −0.2
Glycine × Glycerol 0.1685 −0.5
NaCl2 <0.0001 −0.7
Glycerol2 0.0108 1.0
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for each parameter. For example the pH range of interest
might be a region in relation to the expected pI of the protein.
It is important to note that once parameter ranges are
determined the screen and resulting statistical models will
not be able to predict the B22 value of formulations with
parameters significantly outside these ranges. However, this
does not diminish the fact that the statistical models can
accurately predict the B22 value of a large number of novel
formulation conditions based on parameter combinations not
measured in the original screen.

CONCLUSIONS

As hypothesized in previous publications (9,21,25), high
throughput screening of second virial coefficients shows
promise for evaluating the interactions of proteins in solution.
We have demonstrated that an incomplete factorial screen
combined with a neural network model can be used to
accurately predict second virial coefficients for untested
formulations. A B22 value screen of only 81 formulation
conditions was used to predict the B22 values for 12,636
possible formulations with an accuracy of 2.6×10−4 mol ml/g2.
These preliminary studies suggest that a high-throughput
chromatographic SIC system with increased automation may
enhance and accelerate determinations of the optimum
conditions that improve the physical solubility/stability of
drug formulations. It also suggests this same strategy may be
useful to predict formulation adjustments required for
optimized protein expression and/or crystallization.

The strong correlation between SIC and SLS measure-
ments of B22 value lends further evidence that SIC may be
useful as a replacement for the SLS method. The use of SIC
in lieu of SLS offers several significant advantages including:
(1) SIC requires less protein per experiment, (2) SIC is easily
performed with aqeous or membrane proteins whereas SLS is
difficult or impossible to use with membrane proteins, (3) SIC
is much faster than SLS, (4) SIC is useful with a wider variety
of additives due to additive interference with the SLS signal,
(5) SIC can be miniaturized and performed in a high-
throughput manner thereby enabling studies on a large
sample set (i.e. incomplete factorial).

The current time required to run self-interaction chro-
matography in triplicate is approximately 30 min. While
30 min per experiment by SIC is much faster than previous
SLS methods (20), the use of B22 values for these applications
would benefit significantly by increased throughput via
parallelization, robotic automation and integration of analysis
techniques into a single platform.
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